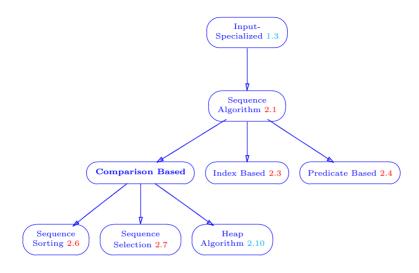
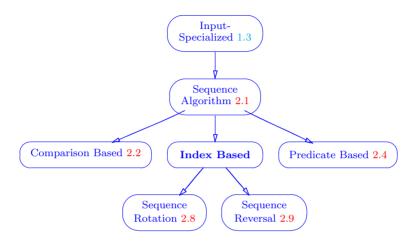

2. Sequence Algorithm Concepts

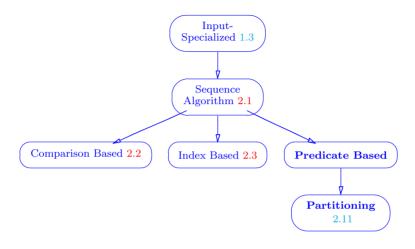
Section authors: David R. Musser and Brian Osman.


2.1. Sequence Algorithm

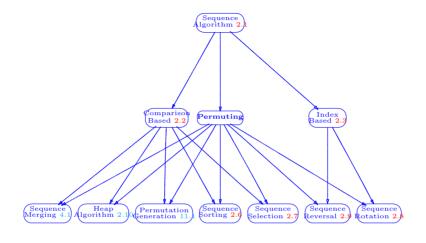
A sequence algorithm is an algorithm ($\S1.2$) that takes one or more linear sequences as inputs.


Refinement of: Algorithm Specialized by Input (§1.3).

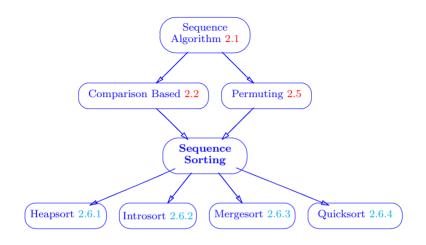
2.2. Comparison Based Sequence Algorithm


A comparison based sequence algorithm is a sequence algorithm ($\S 2.1$) whose computation depends on comparisons between pair of values in the sequence. Such an algorithm depends upon a comparison operator, one that is either previously defined as < or is passed to the algorithm. In either case the comparison operator must compute a Strict Weak Ordering ($\S 5.1$) on the value type of the sequence.

2.3. Index Based Sequence Algorithm


An *index based sequence algorithm* is a sequence algorithm (§2.1) that operates only on the positions within the sequence, independently of the values stored.

2.4. Predicate Based Sequence Algorithm

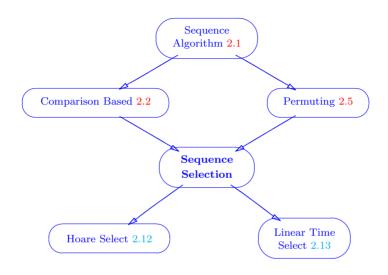

A predicate based sequence algorithm is a sequence algorithm ($\S 2.1$) whose computation depends on the results of applying a given predicate to values in the sequence.

2.5. Sequence Permuting Algorithm

A sequence permuting algorithm is a sequence algorithm ($\S 2.1$) whose output is a permutation of its input.

2.6. Sequence Sorting Algorithm

Refinement of: Comparison Based ($\S 2.2$), Permuting ($\S 2.5$), Sequence Algorithm ($\S 2.1$).


Input: Iterators first and last delimiting a range of elements [first, last)
and optionally a comparison operator (§2.2) comp.

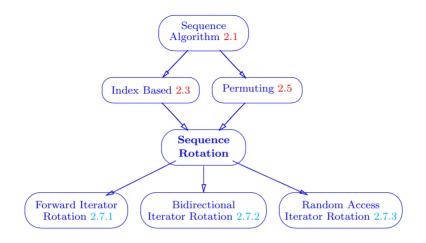
Output: A modified sequence of elements in the same range.

Effects:

- After execution, the elements in [first, last) are a permutation (§2.5) of the input.
- After execution, the elements in [first, last) are in nondecreasing order according to the comparison operator defined on the value type of the sequence or passed to the algorithm as parameter comp.

2.7. Sequence Selection Algorithm

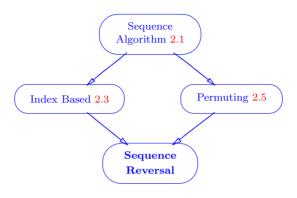
Refinement of: Comparison Based ($\S 2.2$), Permuting ($\S 2.5$), Sequence Algorithm ($\S 2.1$).


Input: Iterators first, nth and last such that nth is in the range [first, last), and optionally a comparison operator (§2.2) comp.

Output: A modified sequence of elements in the same range.

Effects:

- After execution, the elements in [first, last) are a permutation (§2.5) of the input.
- After execution, the element pointed to by the iterator nth is the same as the element that would be in that position if the entire range [first, last) had been sorted, and none of the elements in [nth, last) are less than any of the elements in the range first, nth).
- The reordering is done according to the comparison operator defined on the value type of the sequence or passed to the algorithm as parameter comp.


2.8. Sequence Rotation Algorithm

- Refinement of: Index Based ($\S 2.3$), Permuting ($\S 2.5$), Sequence Algorithm ($\S 2.1$).
- Input: Iterators first, middle, and last such that first and last delimit a range of elements [first, last) and the range [first, middle) is a prefix of [first, last).
- Output: A modified sequence of elements in the range [first, last).

Effects: After execution, the elements in [first, last) are those that were in [middle, last) in the input, followed by those that were in [first, middle) in the input.

2.9. Sequence Reversal Algorithm

Refinement of: Index Based ($\S 2.3$), Permuting ($\S 2.5$), Sequence Algorithm ($\S 2.1$).

Input: A sequence of elements in a range [first, last).

Output: A modified sequence of elements in the same range.

Effects: After execution, the elements in [first, last) are the same as those in the input, but in the reverse order.